# EpyNN/epynn/rnn/models.py
# Local application/library specific imports
from epynn.commons.models import Layer
from epynn.commons.maths import (
tanh,
xavier,
clip_gradient,
activation_tune,
)
from epynn.rnn.forward import rnn_forward
from epynn.rnn.backward import rnn_backward
from epynn.rnn.parameters import (
rnn_compute_shapes,
rnn_initialize_parameters,
rnn_compute_gradients,
rnn_update_parameters
)
[docs]class RNN(Layer):
"""
Definition of a RNN layer prototype.
:param units: Number of unit cells in RNN layer, defaults to 1.
:type units: int, optional
:param activate: Non-linear activation of hidden state, defaults to `tanh`.
:type activate: function, optional
:param initialization: Weight initialization function for RNN layer, defaults to `xavier`.
:type initialization: function, optional
:param clip_gradients: May prevent exploding/vanishing gradients, defaults to `False`.
:type clip_gradients: bool, optional
:param sequences: Whether to return only the last hidden state or the full sequence, defaults to `False`.
:type sequences: bool, optional
:param se_hPars: Layer hyper-parameters, defaults to `None` and inherits from model.
:type se_hPars: dict[str, str or float] or NoneType, optional
"""
def __init__(self,
unit_cells=1,
activate=tanh,
initialization=xavier,
clip_gradients=True,
sequences=False,
se_hPars=None):
"""Initialize instance variable attributes.
"""
super().__init__(se_hPars)
self.d['u'] = unit_cells
self.activate = activate
self.initialization = initialization
self.clip_gradients = clip_gradients
self.sequences = sequences
self.activation = { 'activate': self.activate.__name__ }
self.trainable = True
return None
[docs] def compute_shapes(self, A):
"""Wrapper for :func:`epynn.rnn.parameters.rnn_compute_shapes()`.
:param A: Output of forward propagation from previous layer.
:type A: :class:`numpy.ndarray`
"""
rnn_compute_shapes(self, A)
return None
[docs] def initialize_parameters(self):
"""Wrapper for :func:`epynn.rnn.parameters.rnn_initialize_parameters()`.
"""
rnn_initialize_parameters(self)
return None
[docs] def forward(self, A):
"""Wrapper for :func:`epynn.rnn.forward.rnn_forward()`.
:param A: Output of forward propagation from previous layer.
:type A: :class:`numpy.ndarray`
:return: Output of forward propagation for current layer.
:rtype: :class:`numpy.ndarray`
"""
self.compute_shapes(A)
activation_tune(self.se_hPars)
A = self.fc['A'] = rnn_forward(self, A)
self.update_shapes(self.fc, self.fs)
return A
[docs] def backward(self, dX):
"""Wrapper for :func:`epynn.rnn.backward.rnn_backward()`.
:param dX: Output of backward propagation from next layer.
:type dX: :class:`numpy.ndarray`
:return: Output of backward propagation for current layer.
:rtype: :class:`numpy.ndarray`
"""
activation_tune(self.se_hPars)
dX = rnn_backward(self, dX)
self.update_shapes(self.bc, self.bs)
return dX
[docs] def compute_gradients(self):
"""Wrapper for :func:`epynn.rnn.parameters.rnn_compute_gradients()`.
"""
rnn_compute_gradients(self)
if self.clip_gradients:
clip_gradient(self)
return None
[docs] def update_parameters(self):
"""Wrapper for :func:`epynn.rnn.parameters.rnn_update_parameters()`.
"""
if self.trainable:
rnn_update_parameters(self)
return None