# EpyNN/epynn/rnn/backward.py
# Related third party imports
import numpy as np
[docs]def initialize_backward(layer, dX):
"""Backward cache initialization.
:param layer: An instance of RNN layer.
:type layer: :class:`epynn.rnn.models.RNN`
:param dX: Output of backward propagation from next layer.
:type dX: :class:`numpy.ndarray`
:return: Input of backward propagation for current layer.
:rtype: :class:`numpy.ndarray`
:return: Next hidden state initialized with zeros.
:rtype: :class:`numpy.ndarray`
"""
if layer.sequences:
dA = dX # Full length sequence
elif not layer.sequences:
dA = np.zeros(layer.fs['h']) # Empty full length sequence
dA[:, -1] = dX # Assign to last index
cache_keys = ['dh_', 'dh', 'dhn']
layer.bc.update({k: np.zeros(layer.fs['h']) for k in cache_keys})
layer.bc['dA'] = dA
layer.bc['dX'] = np.zeros(layer.fs['X']) # To previous layer
dh = layer.bc['dh'][:, 0] # To previous step
return dA, dh
[docs]def rnn_backward(layer, dX):
"""Backward propagate error gradients to previous layer.
"""
# (1) Initialize cache and hidden state gradient
dA, dh = initialize_backward(layer, dX)
# Reverse iteration over sequence steps
for s in reversed(range(layer.d['s'])):
# (2s) Slice sequence (m, s, u) w.r.t step
dA = layer.bc['dA'][:, s] # dL/dA
# (3s) Gradient of the loss w.r.t. next hidden state
dhn = layer.bc['dhn'][:, s] = dh # dL/dhn
# (4s) Gradient of the loss w.r.t hidden state h_
dh_ = layer.bc['dh_'][:, s] = (
(dA + dhn)
* layer.activate(layer.fc['h_'][:, s], deriv=True)
) # dL/dh_ - To parameters gradients
# (5s) Gradient of the loss w.r.t hidden state h
dh = layer.bc['dh'][:, s] = (
np.dot(dh_, layer.p['V'].T)
) # dL/dh - To previous step
# (6s) Gradient of the loss w.r.t X
dX = layer.bc['dX'][:, s] = (
np.dot(dh_, layer.p['U'].T)
) # dL/dX - To previous layer
dX = layer.bc['dX']
return dX # To previous layer